Login

Generals
GP: 41 | W: 14 | L: 22 | T: 5 | P: 33
GF: 108 | GA: 127 | PP%: 16.46% | PK%: 75.00%
GM : League Office | Morale : 43 | Team Overall : 67
Next Games #310 vs Brass
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Generals
14-22-0, 33pts
1
FINAL
7 Marlboros
16-18-0, 39pts
Team Stats
L2StreakW1
7-10-0Home Record10-8-0
7-12-0Away Record6-10-0
4-5-0Last 10 Games4-6-0
2.63Goals Per Game2.83
3.10Goals Against Per Game2.78
16.46%Power Play Percentage24.28%
75.00%Penalty Kill Percentage83.92%
Generals
14-22-0, 33pts
3
FINAL
6 Rush
17-16-0, 41pts
Team Stats
L2StreakW4
7-10-0Home Record8-9-0
7-12-0Away Record9-7-0
4-5-0Last 10 Games7-2-0
2.63Goals Per Game3.05
3.10Goals Against Per Game3.15
16.46%Power Play Percentage14.00%
75.00%Penalty Kill Percentage79.43%
Generals
14-22-0, 33pts
2023-01-23
Brass
16-14-0, 43pts
Team Stats
L2StreakW1
7-10-0Home Record9-8-0
7-12-0Away Record7-6-0
4-5-0Last 10 Games3-5-0
2.63Goals Per Game2.88
3.10Goals Against Per Game2.88
16.46%Power Play Percentage15.38%
75.00%Penalty Kill Percentage80.26%
Tigers
13-16-0, 37pts
2023-01-25
Generals
14-22-0, 33pts
Team Stats
W1StreakL2
6-7-0Home Record7-10-0
7-9-0Away Record7-12-0
2-7-0Last 10 Games4-5-0
2.95Goals Per Game2.63
2.83Goals Against Per Game2.63
17.34%Power Play Percentage16.46%
78.99%Penalty Kill Percentage75.00%
Thunderbirds
19-12-0, 48pts
2023-01-27
Generals
14-22-0, 33pts
Team Stats
T1StreakL2
6-6-0Home Record7-10-0
13-6-0Away Record7-12-0
4-5-0Last 10 Games4-5-0
3.54Goals Per Game2.63
2.78Goals Against Per Game2.63
25.00%Power Play Percentage16.46%
80.45%Penalty Kill Percentage75.00%
Team Leaders
Goals
Don Tannahill
13
Assists
John Van Horlick
21
Points
Don Tannahill
26
Plus/Minus
Blair Allister
4
Wins
Garry Bauman
14
Save Percentage
Garry Bauman
0.845

Team Stats
Goals For
108
2.63 GFG
Shots For
821
20.02 Avg
Power Play Percentage
16.5%
26 GF
Offensive Zone Start
39.5%
Goals Against
127
3.10 GAA
Shots Against
782
19.07 Avg
Penalty Kill Percentage
75.0%%
37 GA
Defensive Zone Start
38.6%
Team Info

General ManagerLeague Office
CoachPunch Imlach
DivisionCHL
ConferenceAHL
CaptainAndre Savard
Assistant #1Bill Clement
Assistant #2Gerry O'Flaherty


Arena Info

Capacity3,000
Attendance2,481
Season Tickets300


Roster Info

Pro Team29
Farm Team23
Contract Limit52 / 60
Prospects7


Team History

This Season14-22-5 ( 33PTS)
History142-146-65 (0.402%)
Playoff Appearances4
Playoff Record (W-L)9-14
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Don Tannahill (R)0X99.00654187787191938211828569683740165972021350,000$
2Tom Earl (R)0X98.00502289837199767561747468614750165770024247,000$
3Anders Parmstrom25XXX100.0054279975698395738977765070797515270128369,000$
4Bill Clement (R) (A)0X97.00836169727583817577797572653446545770020238,000$
5Jarda Krupicka (R)0X100.0064308577689699725564698056403615569024350,000$
6Neil Clairmont (R)0X100.0070457878738590705467727159474315868023236,000$
7Blair Allister (R)52XXX100.0052197779679099688866687361403516067023331,000$
8Andre Savard (R) (C)0X99.0067406772747377717574737069274259606701735,000$
9Don O'Donoghue (R)0X97.00663978737183886657676871623840105866021229,000$
10Pete Laframboise (R)0XX100.00675081737577876780676474613536116066020225,000$
11Gerry O'Flaherty (R) (A)0X100.00664379727079836854677274643136325666020226,000$
12Josef Augusta (R)0XXX100.0073477167718070688062737367292812206402415,000$
13Dave Dunn (R)0X98.00998259718086778315807781624344136273122273,000$
14Brian Crawley (R)0X98.0045228290738199771574757957474216172021246,000$
15Merv Haney (R)0X100.0076436571728582671564568152373215768021331,000$
16Willie Brossart (R)0X100.0077496971738279651559578152393615567021331,000$
17Lee Carpenter (R)0X100.0071376372718685661563598053363315567021331,000$
18John Van Horlick (R)0X100.0081496169758479641554568349393416067021331,000$
Scratches
1Carl-Goran Oberg0X95.0041249971717790755573835274999915571132269,000$
2Warren Williams (R)0X100.0078516763797462685572607362252312206301811,000$
3Rudiger Noack (R)0XXX100.005226667471698265706465666526225206202625,000$
4Bryon Baltimore (R)0X100.0074506766777172631562547456252829206301811,000$
5Gaston Furrer (R)0X100.0053257277688192581548577253282612206202513,000$
6Vasile Boldescu (R)0XXXX100.005628626668717463707054666025211205902911,000$
7Giulio Verocai0X100.0043146674667285551546566355292813205802813,000$
TEAM AVERAGE99.24653974737282846947676772613939124767
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Garry Bauman097.006970707372919192918470605515678030149,000$
2Bob Johnson (R)098.007168717372787673737964393414469023112,500$
Scratches
1Pierre Hamel (R)0100.007372747072777575757364292672067018324,000$
2Jacques Lemelin (R)0100.00798774677364626262624334291206302135,000$
TEAM AVERAGE98.757374727172787676757560413633569
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Punch Imlach6877605747973CAN61140,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Don TannahillGenerals (DET)LW38131326-4160515483236515.66%375219.8042613771011793018.34%39800000.6900000321
2Brian CrawleyGenerals (DET)D4181725-120005749213416.33%4497823.87538291390221127100.00%000000.5100000013
3Tom EarlGenerals (DET)RW41111324-520116788255912.50%584920.72448221400001680150.36%13700100.5700000021
4John Van HorlickGenerals (DET)D4112122339568383614212.78%4284820.6907719124000095000.00%000000.5200001101
5Dave DunnGenerals (DET)D4181321-128151384965174012.31%3894223.0026840138101190210.00%000000.4500001201
6Bill ClementGenerals (DET)C41101121-114201077472335813.89%472617.72347121270000602046.77%75900000.5800000302
7Neil ClairmontGenerals (DET)LW41128203160413161243519.67%860414.7423513730002300041.07%5600000.6600000021
8Blair AllisterGenerals (DET)C/LW/RW416131942075334122717.65%953613.09000090001423053.45%5800000.7100000110
9Jarda KrupickaGenerals (DET)RW4171118-126015447826578.97%666416.2115620129000000143.75%3200000.5400000021
10Merv HaneyGenerals (DET)D41116170320523411699.09%2662715.32000214000011000.00%000000.5400000200
11Andre SavardGenerals (DET)C4189173100485650163216.00%254213.24033956000022148.55%51900000.6300000201
12Carl-Goran ObergGenerals (DET)LW405914-5001185112269.80%280220.073361112101101410059.62%5200000.3500000000
13Willie BrossartGenerals (DET)D412111341753861288227.14%3186521.10235171250000110000.00%000000.3000010020
14Don O'DonoghueGenerals (DET)RW415712316047222272222.73%250912.4300000000001163.16%1900000.4700000020
15Pete LaframboiseGenerals (DET)C/LW4145941210113026101815.38%12676.5400000000000048.16%24500000.6700101001
16Lee CarpenterGenerals (DET)D411671360342817575.88%3965015.8700026000145000.00%000000.2200000020
17Anders ParmstromGenerals (DET)C/LW/RW41257-1120939246248.33%058714.320223870000540058.08%56300000.2400000000
18Gerry O'FlahertyGenerals (DET)LW4143748019182681915.38%32696.5800000000000130.00%1000000.5200000001
Team Total or Average734108191299-433372569777382127357513.15%2651202716.392645712121372235896214645.93%284800100.5000113141614
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Garry BaumanGenerals (DET)41142050.8452.952341411157420210.00%0392102
2Bob JohnsonGenerals (DET)50200.7186.001100011390000.00%0239000
Team Total or Average46142250.8393.0824514112678102104141102


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anders ParmstromGenerals (DET)C/LW/RW281/1/1942 8:15:39 PMNo173 Lbs6 ft0NoNoNo3Pro & Farm69,000$31,809$69,000$31,809$0$0$No69,000$69,000$
Andre SavardGenerals (DET)C171/1/1953 5:41:05 PMYes185 Lbs6 ft1NoNoNo3Pro & Farm5,000$2,305$5,000$2,305$0$0$No5,000$5,000$
Bill ClementGenerals (DET)C201/1/1950 4:55:09 AMYes190 Lbs6 ft1NoNoNo2Pro & Farm38,000$17,518$38,000$17,518$0$0$No38,000$
Blair AllisterGenerals (DET)C/LW/RW231/1/1947 7:52:33 PMYes160 Lbs5 ft8NoNoNo3Pro & Farm31,000$14,291$31,000$14,291$0$0$No31,000$31,000$
Bob JohnsonGenerals (DET)G231/1/1948 3:32:35 AMYes180 Lbs6 ft0NoNoNo1Pro & Farm12,500$5,762$12,500$5,762$0$0$No
Brian CrawleyGenerals (DET)D211/1/1949 9:44:51 AMYes160 Lbs6 ft3NoNoNo2Pro & Farm46,000$21,206$46,000$21,206$0$0$No46,000$
Bryon BaltimoreGenerals (DET)D181/1/1952 7:39:24 PMYes190 Lbs6 ft2NoNoNo1Pro & Farm1,000$461$1,000$461$0$0$No
Carl-Goran ObergGenerals (DET)LW321/1/1938 5:54:33 AMNo179 Lbs6 ft0NoNoNo2Pro & Farm69,000$31,809$69,000$31,809$0$0$No69,000$
Dave DunnGenerals (DET)D221/1/1948 6:05:50 PMYes200 Lbs6 ft2NoNoNo2Pro & Farm73,000$33,652$73,000$33,652$0$0$No73,000$
Don O'DonoghueGenerals (DET)RW211/1/1949 7:24:53 PMYes180 Lbs5 ft10NoNoNo2Pro & Farm29,000$13,369$29,000$13,369$0$0$No29,000$
Don TannahillGenerals (DET)LW211/1/1949 7:16:52 PMYes178 Lbs5 ft11NoNoNo3Pro & Farm50,000$23,050$50,000$23,050$0$0$No50,000$50,000$
Garry BaumanGenerals (DET)G301/1/1940 7:00:12 PMNo181 Lbs5 ft11NoNoNo1Pro & Farm49,000$22,589$49,000$22,589$0$0$No
Gaston FurrerGenerals (DET)D251/1/1945 5:11:57 AMYes168 Lbs5 ft10NoNoNo1Pro & Farm3,000$1,383$3,000$1,383$0$0$No
Gerry O'FlahertyGenerals (DET)LW201/1/1950 4:47:34 AMYes182 Lbs5 ft10NoNoNo2Pro & Farm26,000$11,986$26,000$11,986$0$0$No26,000$
Giulio VerocaiGenerals (DET)D281/1/1942 4:56:27 AMNo163 Lbs5 ft9NoNoNo1Pro & Farm3,000$1,383$3,000$1,383$0$0$No
Jacques LemelinGenerals (DET)G211/1/1949 3:06:59 AMYes155 Lbs5 ft9NoNoNo3Pro & Farm5,000$2,305$5,000$2,305$0$0$No5,000$5,000$
Jarda KrupickaGenerals (DET)RW241/1/1946 6:24:19 PMYes165 Lbs5 ft9NoNoNo3Pro & Farm50,000$23,050$50,000$23,050$0$0$No50,000$50,000$
John Van HorlickGenerals (DET)D211/1/1949 10:06:47 AMYes190 Lbs6 ft0NoNoNo3Pro & Farm31,000$14,291$31,000$14,291$0$0$No31,000$31,000$
Josef AugustaGenerals (DET)C/LW/RW241/1/1946 4:58:45 AMYes190 Lbs5 ft10NoNoNo1Pro & Farm5,000$2,305$5,000$2,305$0$0$No
Lee CarpenterGenerals (DET)D211/1/1949 9:56:52 AMYes180 Lbs5 ft10NoNoNo3Pro & Farm31,000$14,291$31,000$14,291$0$0$No31,000$31,000$
Merv HaneyGenerals (DET)D211/1/1949 9:53:45 AMYes185 Lbs5 ft11NoNoNo3Pro & Farm31,000$14,291$31,000$14,291$0$0$No31,000$31,000$
Neil ClairmontGenerals (DET)LW231/1/1947 6:50:28 PMYes175 Lbs6 ft0NoNoNo2Pro & Farm36,000$16,596$36,000$16,596$0$0$No36,000$
Pete LaframboiseGenerals (DET)C/LW201/1/1950 4:18:49 AMYes185 Lbs6 ft2NoNoNo2Pro & Farm25,000$11,525$25,000$11,525$0$0$No25,000$
Pierre HamelGenerals (DET)G181/1/1952 6:33:37 PMYes170 Lbs5 ft9NoNoNo3Pro & Farm24,000$11,064$24,000$11,064$0$0$No24,000$24,000$
Rudiger NoackGenerals (DET)C/LW/RW261/1/1944 6:26:25 PMYes172 Lbs6 ft0NoNoNo2Pro & Farm5,000$2,305$5,000$2,305$0$0$No5,000$
Tom EarlGenerals (DET)RW241/1/1947 3:16:00 AMYes161 Lbs5 ft10NoNoNo2Pro & Farm47,000$21,667$47,000$21,667$0$0$No47,000$
Vasile BoldescuGenerals (DET)C/LW/RW/D291/1/1941 6:43:14 PMYes176 Lbs5 ft10NoNoNo1Pro & Farm1,000$461$1,000$461$0$0$No
Warren WilliamsGenerals (DET)RW181/1/1952 7:04:35 PMYes194 Lbs5 ft11NoNoNo1Pro & Farm1,000$461$1,000$461$0$0$No
Willie BrossartGenerals (DET)D211/1/1949 9:43:21 AMYes190 Lbs6 ft0NoNoNo3Pro & Farm31,000$14,291$31,000$14,291$0$0$No31,000$31,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2922.76178 Lbs5 ft112.1028,534$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Don O'DonoghueDon TannahillTom Earl40122
2Anders ParmstromBill ClementJarda Krupicka30122
3Neil ClairmontAndre SavardBlair Allister20122
4Gerry O'FlahertyPete LaframboiseDon O'Donoghue10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dave DunnBrian Crawley40032
2Willie BrossartJohn Van Horlick30032
3Merv HaneyLee Carpenter20032
4Dave DunnBrian Crawley10032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Neil ClairmontAndre SavardTom Earl60014
2Don TannahillBill ClementJarda Krupicka40014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dave DunnBrian Crawley60014
2Willie BrossartJohn Van Horlick40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Bill ClementAndre Savard60041
2Tom EarlNeil Clairmont40041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dave DunnBrian Crawley60041
2Willie BrossartJohn Van Horlick40041
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tom Earl60050Dave DunnBrian Crawley60050
2Neil Clairmont40050Willie BrossartJohn Van Horlick40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Neil ClairmontAndre Savard60023
2Tom EarlBill Clement40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dave DunnBrian Crawley60032
2Willie BrossartJohn Van Horlick40032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anders ParmstromDon TannahillTom EarlDave DunnBrian Crawley
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders ParmstromDon TannahillTom EarlDave DunnBrian Crawley
Extra Forwards
Normal PowerPlayPenalty Kill
Neil Clairmont, Andre Savard, Blair AllisterNeil Clairmont, Andre SavardBlair Allister
Extra Defensemen
Normal PowerPlayPenalty Kill
Merv Haney, Lee Carpenter, Willie BrossartMerv HaneyLee Carpenter, Willie Brossart
Penalty Shots
Andre Savard, Anders Parmstrom, Tom Earl, Neil Clairmont, Bill Clement
Goalie
#1 : Bob Johnson, #2 : Garry Bauman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Brass21010000743210100007430000000000030.7507111800363438036249280292040161827500.00%8187.50%1546112448.58%486109944.22%27662544.16%970670972297516254
2Canadiens42200000911-21010000015-43210000086240.500916250136343808824928029208132306316212.50%13376.92%0546112448.58%486109944.22%27662544.16%970670972297516254
3Cougars4220000013130211000005502110000088040.5001324370036343808424928029209035396416318.75%17570.59%0546112448.58%486109944.22%27662544.16%970670972297516254
4Growlers422000001091211000006512110000044040.5001018280036343807024928029206826386618316.67%12375.00%0546112448.58%486109944.22%27662544.16%970670972297516254
5Marlboros523000001115-4312000008712110000038-540.40011203100363438091249280292010626608920210.00%27677.78%0546112448.58%486109944.22%27662544.16%970670972297516254
6Mooseheads2011000058-31010000014-31001000044010.25056110036343805624928029203913233911327.27%9455.56%1546112448.58%486109944.22%27662544.16%970670972297516254
7Rush41210000131303111000010731010000036-330.37513243700363438011224928029205819167624625.00%8187.50%0546112448.58%486109944.22%27662544.16%970670972297516254
8Scouts40400000917-81010000024-230300000713-600.000915241036343809124928029206823336818422.22%13746.15%0546112448.58%486109944.22%27662544.16%970670972297516254
9Stingers421100001192210100004222110000077050.625112031003634380612492802920681728628225.00%14285.71%0546112448.58%486109944.22%27662544.16%970670972297516254
10Thunderbirds2020000058-31010000035-21010000023-100.0005101500363438021249280292043161438500.00%7185.71%0546112448.58%486109944.22%27662544.16%970670972297516254
11Tigers42200000111102110000078-12110000043140.500111930003634380762492802920762132711218.33%15473.33%0546112448.58%486109944.22%27662544.16%970670972297516254
12Wolves2011000049-5000000000002011000049-510.250481200363438035249280292045211034500.00%50100.00%0546112448.58%486109944.22%27662544.16%970670972297516254
Total41142250000108127-1920710300005456-221712200005471-17330.40210819129911363438082124928029207822653416971582616.46%1483775.00%2546112448.58%486109944.22%27662544.16%970670972297516254
_Since Last GM Reset41192200000108127-1920710300005456-2211212-300005471-17380.46310819129911363438082124928029207822653416971582616.46%1483775.00%2546112448.58%486109944.22%27662544.16%970670972297516254
_Vs Conference41192200000108127-1920710300005456-2211212-300005471-17380.46310819129911363438082124928029207822653416971582616.46%1483775.00%2546112448.58%486109944.22%27662544.16%970670972297516254
_Vs Division9910000002224-2536000001293464000001015-5181.0002240620036343801522492802920174438815128414.29%41880.49%0546112448.58%486109944.22%27662544.16%970670972297516254

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4133L210819129982178226534169711
All Games
GPWLOTWOTL TGFGA
411422005108127
Home Games
GPWLOTWOTL TGFGA
207100035456
Visitor Games
GPWLOTWOTL TGFGA
217120025471
Last 10 Games
WLOTWOTL T
45001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1582616.46%1483775.00%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
24928029203634380
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
546112448.58%486109944.22%27662544.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
970670972297516254


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-11-071Generals1Scouts2ALBoxScore
4 - 2022-11-1012Marlboros3Generals6BWBoxScore
6 - 2022-11-1218Rush3Generals1BLBoxScore
8 - 2022-11-1425Generals1Canadiens0AWBoxScore
10 - 2022-11-1633Canadiens5Generals1BLBoxScore
13 - 2022-11-1946Tigers5Generals3BLBoxScore
14 - 2022-11-2050Generals3Wolves3ATBoxScore
17 - 2022-11-2361Generals4Cougars5ALBoxScore
18 - 2022-11-2466Marlboros2Generals1BLBoxScore
20 - 2022-11-2677Rush3Generals3BTBoxScore
21 - 2022-11-2782Generals0Tigers1ALBoxScore
24 - 2022-11-3091Growlers4Generals3BLBoxScore
25 - 2022-12-0197Generals3Growlers2AWBoxScore
29 - 2022-12-05107Scouts4Generals2BLBoxScore
30 - 2022-12-06111Generals4Mooseheads4ATBoxScore
33 - 2022-12-09118Generals4Canadiens5ALBoxScore
34 - 2022-12-10126Cougars3Generals4BWBoxScore
36 - 2022-12-12135Stingers1Generals1BTBoxScore
37 - 2022-12-13139Generals2Stingers4ALBoxScore
39 - 2022-12-15150Cougars2Generals1BLBoxScore
41 - 2022-12-17157Generals5Stingers3AWBoxScore
43 - 2022-12-19166Rush1Generals6BWBoxScore
44 - 2022-12-20169Generals2Scouts6ALBoxScore
46 - 2022-12-22179Generals2Thunderbirds3ALBoxScore
48 - 2022-12-24187Mooseheads4Generals1BLBoxScore
49 - 2022-12-25196Brass1Generals4BWBoxScore
50 - 2022-12-26201Generals1Growlers2ALBoxScore
52 - 2022-12-28210Growlers1Generals3BWBoxScore
54 - 2022-12-30215Generals4Cougars3AWBoxScore
56 - 2023-01-01223Generals2Marlboros1AWBoxScore
59 - 2023-01-04232Marlboros2Generals1BLBoxScore
61 - 2023-01-06240Generals3Canadiens1AWBoxScore
63 - 2023-01-08248Stingers1Generals3BWBoxScore
66 - 2023-01-11256Generals1Wolves6ALBoxScore
67 - 2023-01-12259Generals4Scouts5ALBoxScore
68 - 2023-01-13265Brass3Generals3BTBoxScore
70 - 2023-01-15275Generals4Tigers2AWBoxScore
72 - 2023-01-17281Thunderbirds5Generals3BLBoxScore
73 - 2023-01-18290Tigers3Generals4BWBoxScore
75 - 2023-01-20299Generals1Marlboros7ALBoxScore
76 - 2023-01-21303Generals3Rush6ALBoxScore
78 - 2023-01-23310Generals-Brass-
80 - 2023-01-25319Tigers-Generals-
82 - 2023-01-27325Thunderbirds-Generals-
85 - 2023-01-30337Canadiens-Generals-
87 - 2023-02-01344Generals-Marlboros-
88 - 2023-02-02351Marlboros-Generals-
90 - 2023-02-04360Growlers-Generals-
92 - 2023-02-06368Generals-Rush-
94 - 2023-02-08375Generals-Thunderbirds-
96 - 2023-02-10381Canadiens-Generals-
98 - 2023-02-12390Wolves-Generals-
99 - 2023-02-13393Generals-Grizzlies-
102 - 2023-02-16404Generals-Tigers-
103 - 2023-02-17412Mooseheads-Generals-
105 - 2023-02-19421Generals-Mooseheads-
107 - 2023-02-21425Generals-Brass-
108 - 2023-02-22431Rush-Generals-
109 - 2023-02-23438Generals-Grizzlies-
111 - 2023-02-25445Mooseheads-Generals-
114 - 2023-02-28455Wolves-Generals-
Trade Deadline --- Trades can’t be done after this day is simulated!
117 - 2023-03-03465Generals-Wolves-
118 - 2023-03-04468Generals-Americans-
119 - 2023-03-05476Grizzlies-Generals-
121 - 2023-03-07486Generals-Scouts-
123 - 2023-03-09491Scouts-Generals-
125 - 2023-03-11497Generals-Growlers-
127 - 2023-03-13507Americans-Generals-
129 - 2023-03-15512Generals-Cougars-
130 - 2023-03-16517Generals-Mooseheads-
133 - 2023-03-19525Grizzlies-Generals-
134 - 2023-03-20529Generals-Americans-
136 - 2023-03-22540Scouts-Generals-
139 - 2023-03-25550Americans-Generals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price53
Attendance37,99411,624
Attendance PCT94.99%58.12%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
17 2481 - 82.70% 9,556$191,116$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
66,152$ 82,750$ 82,750$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 44,568$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
162,449$ 65 871$ 56,615$




Generals Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Ted Lanyon161451141591021421730914.56%143359422.322841691830112620.00%10.8800
2John Brophy20242111153-666615625429514.24%168422820.932836641850220620.00%00.7200
3Wally Boyer2965285137-350335735314.73%22483216.33832404520267157.5610.5700
4Stu McNeill2946163124-1842392821037316.35%21572819.481125367500029652.3110.4300
5Hal Willis2562890118-2812427624922612.39%163453317.7123254814103314366.6700.5200

Generals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Carl Wetzel1666170260.8553.05925914547032410720.00%0
2Pat Rupp913630220.8532.9652702726017720400.00%0
3Gilles Boisvert521817100.8363.282747011509140320.00%0
4Glenn Resch116210.9141.6857002161870100.00%0
5Ray Mikulan115110.9101.9645900151660100.00%0

Generals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2878342519000025222923391911900001281217391514100000124108168725245971105959067016515305245970160446665712352748330.29%2585578.68%01168217353.75%1060206651.31%658125952.26%183412741862555982490
297834291500002392381391813800001171061139161670000122132-108323944168014918167015745095295360149840642710962867124.83%1793878.77%11189214155.53%1031195952.63%636122352.00%191213541784546982498
30782539140000206243-373911208000092114-2239141960000114129-156420637157724785969015805325305180164946843410872865519.23%1693479.88%51124206454.46%1092205053.27%655121354.00%181412771895556969477
317835311200002222220391914600001131021139161760000109120-118222239661813766977015004714955340166645370113353447722.38%2916976.29%51099211551.96%1115228048.90%610120650.58%180512521899576974475
Total Regular Season35314214665000010271059-32176746834000050449951776878310000523560-373491027185828855173763333180712622912358247707199205825605450134831223.15%104523377.70%135126961753.30%4784945450.60%2835552651.30%833858298415253144252197
Playoff
281266000003237-56510000020137615000001224-12123258900081392237717384927097128186531222.64%51982.35%018134252.92%17134050.29%10620352.22%2841943069415978
29624000001920-131200000810-231200000111014193049004681130445529210837357618633.33%14471.43%07716546.67%8214058.57%478952.81%13491155457737
31514000001621-521100000660303000001015-5216304600664093313230013235578035925.71%24675.00%06613748.18%6816241.98%489848.98%11075127386230
Total Playoff23914000006778-111174000003429512210000003349-161867118185001825213460146160143115101692203421062725.47%891978.65%032464450.31%32164250.00%20139051.54%528361589178298146

Generals Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Ted Lanyon30101929-1104385817.24%4169623.229312390000200.00%00.8300
2John Brophy30101727-202037384721.28%3463521.206511280001000.00%00.8500
3Eddie Long30101424-442215318.87%556518.832791400004035.9000.8500
4Dwight Carruthers30101121-56059314223.81%2662220.745712280000100.00%10.6800
5Wally Boyer3171421-400634615.22%763620.52066600002057.4700.6600

Generals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Pat Rupp28141200.8772.54165500705700400.00%0
2Glenn Resch51400.8314.4128640211240000.00%0
3Danny Sullivan10001.0000.00%1300080000.00%0
4Ray Mikulan60400.6927.132020024780000.00%0